Exam Seat No:_____ C. U. SHAH UNIVERSITY **Summer Examination-2022**

Subject Name : Metric Space

Subject Code: 4SC05MES1		Branch: B.Sc. (Mathematics)	Branch: B.Sc. (Mathematics)	
Semester: 5	Date: 26/04/2022	Time: 11:00 To 02:00	Marks: 70	
Instructions: (1) Use of P (2) Instruction (3) Draw ne (4) Assume	rogrammable calculator & an ons written on main answer b at diagrams and figures (if ne suitable data if needed.	y other electronic instrument is prohook are strictly to be obeyed. cossary) at right places.	ibited.	
Q-1 Attempt (a) Let (X, d) if 1) E' 2) E' 3) \overline{E}	the following questions: be a metric space and $E \subset X$ = X = E = X	Then set <i>E</i> is said to be dense set	[14] (01)	
4) \bar{E} b) Which of 1) {1 2) {1 3) [0, 4) (= E the following subset of R is no. ,2,,10} ,2,3,} ,100]	ot closed?	(01)	
c) If $E = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (1 2) $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ (1 4) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	3] is subset of metric space 1 ,3] ,3) ,3)	R then $E^{\circ} = $	(01)	
d) Define : C	Compact Set		(01)	
e) Define : In	nterior Point		(01)	
f) Check wh	ether the statement is true or	false: If $A \subseteq B$ then $A^{\circ} \subseteq B^{\circ}$.	(01)	
g) Define : N	Ietric Space		(01)	
h) Check wh the real lin	ether the statement is true or ne is not compact.	false: Every closed and bounded sub	set of (01)	
i) Find A° for	or $A = (0, 1]$		(01)	
j) Check wh space X a	ether the statement is true or nd <i>B</i> be a subset of <i>X</i> such that	false: Let <i>A</i> be connected subset of n at $A \subseteq B \subseteq \overline{A}$ then <i>B</i> is also connected	netric (01) ed.	
k) Let $X = \mathbf{F}$	R and $A = \emptyset$ then find <i>int</i> A and $A = \emptyset$	nd <i>ext A</i> .	(02)	
I) Define : C	Continuous function in Metric	space	(02)	

	Attempt any four questions from Q-2 to Q-8	
Q-2 a)	Attempt all questions Prove: i) Finite intersection of open sets of metric space is an open set. ii) Arbitrary intersection of closed sets of metric space is a	[14] (06)
b)	Let (X, d) be a metric space and $E \subset X$. If 'a' is a limit point of E then show that there are infinitely many points of E in every neighborhood of 'a'.	(04)
c)	Define : Closed Set .Show that every finite subset of metric space is closed.	(04)
Q-3 a)	Attempt all questions Let $E_n = (c - \frac{1}{n}, c + \frac{1}{n})$ where $c \in N$ is constant and $n \in N$.Compute	[14] (06)
b)	$\bigcup_{n=1}^{\infty} E_n \text{ and } \bigcap_{n=1}^{\infty} E_n \text{ and determine whether they are open or closed ?}$ Let $X = R$ and define $d: R \times R \to R$ by $d(x, y) = x - y $, then prove that (X, d)	(05)
c)	Define (i) Derived Set (ii) Dense Set	(03)
Q-4 a)	Attempt all questions Let(X, d)be a metric space and $d_1: X \times X \to \mathbf{R}$ defined by $d_1(x, y) = \frac{d(x, y)}{d(x, y)}$ then prove that d_1 is also a metric on X.	[14] (06)
b) c)	Show that distinct points of metric space have different neighborhoods. If (X, d) is a metric space and $A, B \subset X$ with $A \subset B$, then show that $\overline{A} \subset \overline{B}$.	(05) (03)
Q-5 a)	Attempt all questions For a non-empty subset A of metric space (X, d) show that the function $f: X \to \mathbf{R}$ defined by $f(x) = d(x, A)$, $x \in X$ is uniformly continuous. Also show that $f(x) = 0$ if and only if $x \in \overline{A}$.	[14] (07)
b)	Let (X, d) be a complete metric space and $\{F_n\}$ be a decreasing sequence of non- empty closed subsets of X such that $d(F_n) \to 0$ as $n \to \infty$, then show that $F = \bigcap_{n=1}^{\infty} F_n$ contains exactly one point.	(07)
Q-6	Attempt all questions	[14]
a) b)	Prove that the derived set of any subset of metric space is a closed set. Let (X, d_1) and (Y, d_2) be any two metric space, then prove that $f: X \to Y$ is continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y.	(07) (07)
Q-7	Attempt all questions	[14]
a) b)	State and prove Banach Fixed Point Theorem. Let (X, d) be a metric space. If (x, d) is convergent sequence of points of X then	(07) (04)
D)	show that $\{x_n\}$ is Cauchy sequence.	(04)
c)	Show that the sets $A = (5,6)$ and $B = (6,8)$ are separated sets of metric space R .	(03)
Q-8	Attempt all questions	[14]
a) h)	Define :Cantor Set.Show that Cantor set is a closed set. Show that avery compact subset A of matrix areas (X, d) is how dod	(07)
D) C)	Give an example of subsets A and B of metric space (X, a) is bounded. $(A \cap B)' \neq A' \cap B'$.	(05) (02)

